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1. Introduction

Interest in linear programming methods arises in at least two different contexts: theoretical and
practical. The long-established simplex method, developed by G. B. Dantsig in the late 1940's,

has been known from the beginning to be of combinatorial complexity in the worst came. However,

in practice it tends to require a number of iterations that is approximately linear in the problem

dimension. Furthermore, a typical iteration of the simplex method involves relatively little work.

After computing an initial factorization of a square matrix (the basis), each subsequent simplex

iteration requires only a rank-one update of this square matrix. Although linear programs are

often very large, the constraint matrix is normally very sparse. Sparse-matrix techniques have

developed to the point where the factorization and updates required in the simplex method can be

performed not only rapidly, but also with assured numerical stability (see the survey by Gill et aI.,

1984). From a practical viewpoint, these two features - a typically linear number of iterations,

and fast methods for performing each iteration - imply that the simplex method is an effective

and reliable algorithm for linear programming, despite its seemingly unfavorable complexity.

* Many researchers, beginning with Dantzig himself, have observed the seemingly unsatisfac-

tory feature that the simplex method traverses the boundary of the feasible region. From the

*. outset, attempts have been made to develop practical linear programming methods that cros

" the interior of the feasible region - for example, von Neumann (1947), Hoffman et a1. (1953),
Tompkins (1955, 1957) and Frisch (1957). Such methods have sometimes involved the application

of nonlinear techniques to linear programs. However, none of these methods has previously been
claimed, even by its developers, to be competitive in speed with the simplex method for general

linear programs.

On the theoretical side, researchers attempted for many years to develop a linear program-

ming algorithm with only polynomial complexity. In 1979, to the accompaniment of wide pub-

licity, this issue was resolved when Khachiyan (1979) presented a worst-caw polynomial-time

method based on a nonlinear geometry of shrinking ellipsoids. Although initially it was thought
that the ellipsoid methods might be as fast in practice as the simplex method, these hopes have

not been realized. Broadly speaking, there are two major difficulties: first, the munber of itera-

tions tends to be very large; second, the computation associated with each iteration is much more
costly than a simplex iteration because sparse-matrix techniques are not applicable.

Within the past year, interest in linear programming has been intensified by the publication

(Karmarkar, 1984) and discussion of a linear programming algorithm that is not only polynomial

in complexity, but also is claimed to be much faster than the simplex method for practical

problems.
In Section 2, we first examine the well known barrier-function approach to solving optimiza-

tion problems with inequality constraints, and derive a representation for the Newton search

direction associated with the subproblem. In Section 3, we show a formal equivalence between

the Newton search direction and the direction associated with Karmarkar's (1964) algorithm.

Section 4 describes a complete interior-point method for linear porming based on the barrier
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transformation, and Section 5 gives some numerical results obtained with a preliminary imple-
mentation of that method. The implications of these results and directions for future research

are discussed in Section 6.

1.2. Notation. The term projective method will denote the algorithm given by Karmarkar
(1984) for the linear program (3.1); see below. The term barrier method will often be used as an

abbreviation for projected Newton barrier method. The vector norm • will always denote the

- Euclidean norm II 112= -(,T,)1/2

,. 2. A Barrier-Function Approach

2.1. Applying a barrier transformation to a lnear program. Barrier-function methods
" treat inequality constraints by creating a barrier function, which is a combination of the original

• "objective function and a weighted sum of functions with a positive singularity at the constraint

- boundary. (Many barrier functions have been proposed; we consider only the logarithmic barrier

function, first suggested by Frisch, 1955.) As the weight assigned to the singularities approaches

zero, the minimum of the barrier function approaches the minimum of the original constrained

problem. Barrier-function methods require a strictly feasible starting point for each minimization,

and generate a sequence of strictly feasible iterates. (The definitive work on barrier functions

-" remains Fiacco and McCormick, 1968; overviews are given by Fletcher, 1981, and Gill, Murray

and Wright, 1981.)
Consider applying a barrier-function method to the following linear program:

minimize eTZ
•ER (2.1)

subject to A= , X : 0,

where A is an m x n matrix with m < n. The subproblem to be solved within a barrier-function

method is:
minimize F(z) u-e z- t ln( .

sEE"J=1 (2.2)

subject to A2 = 6,

where the scalar # (is > 0) is known as the barrier parameter and is specified for each subproblem.

The equality constraints cannot be treated by a barrier transormation, and thus are handled

directly. If z/(p) is the solution of (2.2), then I'(#&) - I as s -. 0, where s is a solution of (2.1)
(see, e.g., Fiacco and McCormick, 1968). Very strong order relations can be derived concerning

. z (p) and cTz*(,) (see, e.g., Mifflin, 1972a, b; Jittorntrum, 1978; Jittorntrum and Osborne, 1978).

In particular, when (2.1) is nondegenerate,

Wld(P) - sell = O(p) (2.3a)

. for sufficiently small i. When (2.1) is degenerate, the corresponding relation is

I"u1(o) - Atli - O(/i). (2.36)
'..

#%~% * S * * . ' ,* * . .* .
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2.2. Solution of the subproblem. Given a linearly constrained problem of the form

minimize F(s) subject to A= , (2.4)

a standard approach is to use a feasible-point descent method (see, e.g., Gill, Murray and Wright,

1981). The current iterate z always satisfies Az = b, and the next iterate s is defined as

. = s + ap, (2.5)

where p is an n-vector (the search direction), and a is a positive scalar (the steplength). The

*computation of p and a must ensure that As = b and F(s) < F(s).

The Newton search direction associated with (2.4) is defined as the step to the minimum of
the quadratic approximation to F(z) derived from the local Taylor series, subject to retaining

feasibility. Thus, the Newton search direction is the solution of the following quadratic program:

minimize P + Ip"HpPen (2.6)
subject to Ap = 0,

-" where g = VP(s) and H = V2 F(z). If r is the vector of Lagrange multipliers for the constraints

in (2.6), then the required solution satisfies the linear system

Note that r converges to the Lagrange multipliers for the constraints As b 5 in the original

problem (2.4).

2.3. The projected Newton search direction. When F(s) is the barrier function in (2.2),

its derivatives are
g(z) = c - ID-le and H(s) = #D - ,

where

D=diag(xi), j=1,...,n, (2.8)

* and e :(,,...,1)T . Note that and H ae well defined only if zs V 0 for all j.
Let pq (the projected Newton barrier direction) denote the Newton search direction defined

by (2.6) when F is the barrier function of (2.2). The associated Lagrange multipliers will be

denoted by r.. Since H(z) is positive definite when z > 0, pa is finite and unique, and is a

descent direction for F(x), i.e., (e - pD-e).p < 0.

It follows from (2.7) that ps and .a satisfy the equationS(pY Ic ADe
I. D - 2 -A7 PD e - D-le)(..
A 0 0 (2.9)
. ; . - I -r.
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Rewriting (2.9) in terms of a vector ri defined by Dr. = -pp, we see that r. and r stisfy

(I DAT)-(m) (D - . (

It follows that r. is the solution and rs the optimal residual of the following linear least-squares
problem:

minimise IDc - in - DAT rI. (2.1)

The projected Newton barrier direction is then

i = -(1p,)Dr. (2.12)

For a given positive s, Newton's method will eventually reach a domain in which unit steps
along the directions p, will be feasible. The iterates can then be expected to converge quadrat-
ically. In general, the smaller p, the smaller the attractive domain. The algorithm remains well

defined as p tends to zero, and the limiting case can be safely simulated (in practice) by using a
very small value such as p = 10-15.

Note that feasible-direction methods are independent of the scaling of the search direction,

if the steplength algorithm is chosen appropriately. We could therefore define the barrier search
direction to be

PO = -Dro (2.13)

for any I _> 0. The ideal Newton step would then be a = 1/p.
The barrier search direction (2.13) withp# = 0 is used in an algorithm proposed by Vanderbei,

Meketon and Freedman (1985). We see that such an algorithm has no domain of quadratic
convergence.

2.4. Upper bounds. The barrier transformation and the associated Newton search direction
can also be defined for linear progrms with upper and lower bounds on the variables, of the

.- form:

minimize eT 3

subjectto Az I, £:5 u.

The subproblem analogous to (2.2) is

minimize e72 -.p int )- E" n~i - SO
. j=1 JMI

subject to Ax = b.
The Hessian of the associated barrier function will be positive definite only if at least one of .

or uj is finite for every j. In this cae, the least-squares problem analogous to (2.11) is

mnimize fiDe - iD. - DArf.
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Here, the matrices D and D are defined by D = diag(li) and D -diag(fi), where

5, = 1/(1/o1 + I/q2)I and 5, = #,(1/, - 1/ ),

with . xi - -s and tj = ui - x,. For simplicity, the remainder of the discussion will assume that

the bounds are of the form in (2.1), i.e., 0 < xi _5 oo, except for the artificial variable discussed

in Section 4.2.

S. Relationship with Karmarkar's Projective Method

In this section, we show the connection between the barrier and projective methods. We assume

that the reader is familiar with the projective method; a good description is given in Todd and

Burrell (1985).

3.1. Summary of the projective method. In the projective method, the linear program is

assumed to be of the special form

minimize eT3
ZE (3.1)

subject to C =0, e*z= 1 , x_0.

Let z*K denote a solution of (3.1). It is also assumed that

CT4 = 0, (3.2)

and that Ce = 0. (These assumptions can always be assured by transforming the problem.)

The optimality conditions for (3.1) imply that

0 = CTA0 + eAS. + , (3.3)

where q is the Lagrange multiplier vector for the bound constraints of (3.1). The complementarity

conditions at z*, imply that
zit: 0, Op It,...,. (3.4)

where * denotes the j-th component of aX. Taking the inner product of c and x's and using

(3.2)-(3.4), we obtain A. ez* = 0. Since eTz*4 = 1, it follows that A. = 0.

Any strictly positive diagonal matrix D defines the following projective transformatios,
which relate any strictly feasible point z and the transformed point SO:

1 _s1
? = eTID-'_z, Z= I D .  (3.5)

In the projective method, given an iterate x, D is defined as diag(xl,..., z,). (Note that D is the

same as the diagonal matrix (2.8) associated with the barrier method, and that De = x.) The

next iterate in the transformed space is given by

S' = a' -c'r,, (3.6)

*N.*~~~~~~~~~ .* . ..~ v " :. .. .**- ,~. . . . . .
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where r= De - DC r, - 4e is the optimal residual of the linear least-squares problem

minimize IIDe - (DC T  e ) ( (3.7)

The steplength a' in (3.6) is chosen to ensure strict feasibility of a" as well as descent in the
transformed 'potential function! (see Karmarkar, 1984, for details).

The new iterate S, in the original parameter space is obtained by applying the transformation
(3.5) to e, so that

• _ or)D(? - a',rf) = 7(x - ,&Dr,),

where 7 is chosen to make eTrz = 1.

3.2. Properties of the projective method. Let r0 be defined as the solution of the least-
squares problem

minimize IDe - DCTer,

and let
"C= C - C7rc,

For reference, we state some properties of various quantities appearing in the projective method.

Lemma 3.1. The solution of (3.7) is r = 1c and A - ea/n.

Lemma 3.2. In the projective method,

r= Dqi - #e,

9= 1/r +;(-P,)

and the new iterate may be written as

ps = Pcs - D 2%,

SK = s + ' ~p.

,.8. Relationship with the banler search direction. When the barrier method is applied
to problem (3.1), we obtain ui and D as the solution of the least-squares problem

minimize IIDe - -D(CT ) D(fl, (3.8)

" and take
ra - De - pe - DC'rw3 - D.,

p. = -(1/p)Dro,

so = Z + apM,

E5' 1~'*~A*'~* *** * -. '~* .. -S ".",.'.'/, .-..' '.,.'..' '.. ;,'._,'.
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for some p and a. We assume that the matrices (DC e )and( C e) have full rank, so that

the solutions of (3.7) and (3.8) are unique.

Lemma 3.3. I the barrier parameter is chosen to be p = p , then = 0 andi =r r,.

Lemma 3.4. i = pc, then

rs = Dqc - p.e,

;s =lA/,)k - "),
"~~ Xm -- + aps.

Comparing Lemmas 3.2 and 3.4, the main result now follows.

Theorem 3.1. Suppose the projective method and the barrier method are applied to problem

(3.1). If the barrier parameter is is = Pc, the search directions p. and p. are parallel. Further,
if the steplengths satisfy a = ryjpc, the iterates -0 and 9, are identical.

Theorem 3.1 is an existence result, showing that a special case of the barrier method would follow

the same path as the projective method. This does not mean that the barrier method should

be specialized. For example, the value p = pc, is admissible in the barrier method only if i! is
positive. As it happens, pc tends to zero and is likely to be positive in a neighborhood of the

solution. It could therefore be a satisfactory choice as the solution is approached.
Similarly, whatever the choice of p, as the barrier method converges to a solution of the

original problem, 9 must converge to A., which is zero. This is consistent with the choice p p-',
which gives 0 = 0 directly.

,.1

L,

p
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4. A Projected Newton Barrier Algorithm

In this section, we give details of the barrier algorithm used to obtain the numerical results

of Section 5. Each iteration is of the form 2 = z + ap (2.5), where the search direction is

the barrier direction pa defined by (2.11)-(2.12), and the barrier parameter may be changed at

every iteration. Any tolerances described are intended to be suitable for machines whose relative

precision is about 10- 15.
Alternative approaches to certain parts of the algorithm are discussed in Section 6.

4.1. The main steps. At the start of each iteration, the quantities p, z, r and q are known,
where & > 0, z > 0, Az = 6, and q - c - AT,. For computational reasons we compute a correction

to r at each stage, since a good estimate is available from the previous iteration. The main steps

of the iteration then take the following form.

1. Define D = diag(zi) and compute r = Dq - pe.

2. Terminate if # and JfrlJ are sufficiently small.

3. If appropriate, reduce i and recompute r = Di - ie.

4. Solve the least-squares problem

minimize iIr - DAT 6flr. (4.1)
89

5. Update r - r + 6r, q - q - A76r, and set r = Dq - pe, p = -(IIF)Dr.

6. Find am, the maximum step a such that x + ap 2. 0.

7. Determine a steplength a E (0, am) at which the barrier function F(z + ap) is suitably less
than F(z).

8. Update z 4- z + ap.

All iterates satisfy A: = b, z > 0, and the vectors r and qi approximate the dual variables and

reduced costs for the original linear program.

The vector r serves two purposes. In step 4, r is the right-hand side for the least-squares

problem, and in step 5 it becomes the residual vector at the least-squares solution. In either
case, r --. 0 as convergence occurs, so that Dv --. p. Hence, the reduced-cost estimates should

ultimately satisfy q > 0, as one might expect.

4.2. The feasibility phase. In order to apply the barrier algorithm to (2.1), a strictly feasible

starting point is necessary. Such a point may be found by the following "phase I' procedure

in which a barrier method is applied to a modified linear program. For any given initial point

zo > 0, we define fo- b - Azo with 1111 - 1, and solve the modified linear program

minimize

subject to (A .)()= , Z._0, f2 0,

*~ *.*J'** d * ~ . %.%% % 1 % V
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using the feasible starting point zo > 0, fo = 1b - Azoll. (Note that, even if A is sparse, the

additional column a in (4.2) will in general be dense.) In our experiments we have used 2o = libile.
When = 0, a suitable point has been found. Since the barrier transformation will not

allow f to reach the desired value of zero, f must be treated differently from the other variables

in solving (4.1) with a barrier algorithm. In our implementation, the search direction p and the

maximum step a are computed as if the variable f were subject to the bound f > -1. If the step

a causes f to become negative, an appropriate shorter step is taken and phase 1 is terminated.

The original linear program is presumed to be infeasible if the final f is positive for a sufficiently
small value of p.

As an alternative, we note that the convergence of the barrier method appears to be moder-

ately insensitive to the choice of linear objective function. This suggests a single-phase algorithm

in which an objective function of the form w cTz + f is used in (4.2), for some positive value of

the scalar w. When f reaches zero, it can thereafter be excluded from the problem. If a single

value of w can be retained at every iteration, only a slight change in the definition of the linear

program is required after a feasible point is found. Some preliminary results with w fixed at

0.01/jjcl seem promising; see Section 5. In general, a sequence of decreasing values of w may be

needed to ensure that a feasible point is always obtained if one exists.

4.3. Solution of the least-squares subproblems. For problems of even moderate size, the

time required to perform an iteration will be dominated by solution of the least-squares problem

(4.1). The widespread interest in interior-point methods has arisen because of their reported speed

on large-scale linear programs. Consequently, problem (4.1) must be solved when A is large and

sparse. Fortunately, methods for sparse least-squares problems have improved dramatically in

the past decade. (For a recent survey, see Heath, 1984.)

An obvious approach to minimizing lir - DAT6X1i is to solve the associated normal equations

AD 2AT6r = ADr (4.3)

using the Cholesky factorization AD 2AT = RTR with R upper triangular. Reliable software

exists for factorizing symmetric definite systems, notably SPARSPAK-A (George and Liu, 1981;

George and Ng, 1984). If the original LP (2.1) is non-degenerate, the matrix AD 2AT will be non-

singular even at the solution. However, for a degenerate problem, AD2AT becomes increasingly

ill-conditioned as the solution is approached, and the accuracy of the computed version of AD2AT

correspondingly deteriorates. Furthermore, any dense columns in A (such as 8 in phase 1) degrade

the sparsity of R.

To alleviate these difficulties, we have used a "hybrid" method in which the least-squares

problems are solved by a conjugate-gradient method (LSQR; Paige and Saunders, 1982) with a

triangular preconditioner R. Thus, an iterative method is applied to

minimize lir - (DATR-)zII, (4.4)

.2'

' . . . .. . . . . . . . . . . . . . . . .

"--".'..--'G .' '--. -.- :'. . . . -.-.-. ..-- ,..-,-.-.-..-.. ....... .... . . . .-.-. .. '.-.-....-. .- .-.- ..- '- : -:. --- '.'---:':
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and the correction Or is recovered by solving Rb, = z.

The preconditioner R comes from the Cholesky factorisation of a sparse matrix that approx-

imates AD AT. Thus,

ADATrow AA - RTRI (4.5)

where A and R are obtained as follows.

1. Before beginning the barrier algorithm, a preliminary row permutation is obtained from the

symbolic factorization of a matrix AAT where A is A with certain columns replaced by zero.

For the results of Section 5, we excluded the artificial vector s in (4.2) and any columns

of A containing 50 or more nonzeroe. Subroutines Genqmd and Smbfct of George and Liu

(1981) were then used to obtain a minimum-degree ordering P and to set up appropriate

data structures for the subsequent numerical factorizations.

2. At each iteration of the barrier algorithm, further columns and/or rows of A may be replaced
by zero: columns for which z3 _< 10-6, and rows that have been marked for exclusion during

earlier iterations. Subroutine Gafet of George and Liu (1981) is then used to obtain the

Cholesky factorization

PAD2AtPT - UTu, U upper triangular,

with the proviso that if a diagonal element of U satisfies ui < 10- 12, then the i-th row of

U is replaced by eT, and the i-th row of PA is marked for exclusion in later iterations. The

preconditioner for (4.4) is then R = UP.

3. After each iteration, any variables satisfying zi < 10- 10 are changed to zero for the remaining

iterations. This (conservative) test is unlikely to remove the £wrong variables from the

problem, but it allows some economy in computing R and solving the least-squares problems.

The performance of LSQR is strongly affected by the quality of the preconditioner, and by
the specified convergence tolerance ATOL (see Paige and Saunders, 1982). With the present

implementation, we have ADAT = RTR + E, + R2 , where El has low rank and f82 11 is small;
the value of ATOL is taken as 10- 12. In this situation, LSQR typically requires only one or two

iterations to achieve acceptable accuracy in phase 2, and only two or three iterations in phase 1.

There is scope in future work for degrading the approximation (4.5) to obtain a sparser R
more quickly, at the expense of further iterations in LSQR. In fact, Gay (1986) has reported
considerable success in the analogous task of preconditioning the symmetric conjugate-gradient

method in order to solve the normal equations (4.3). We discuss this further in Section 6.1.

4.4. Determination of the steplength. The steplength a in (2.5) is intended to ensure a
reduction in the barrier function F(x) in (2.2) at every iteration. Let f(a) denote F(: + ap),

treated as a function of a, and let a,, be the largest positive feasible step along p. When

p - p., P'(0) < 0; by construction of a positive singularity at the boundary of the feasible

region, P(aw) = +o. Thus, there must exist a point a in the interval (0,am) such that
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P1(a*) = 0. Because of the special form of f, * is unique and is the univariate minimizer of f(a)

for a E am.
In our algorithm, a is an approximation to a zero of the function f(a). In order to obtain a

"sufficient decrease" in F (in the sense of Ortega and Rheinboldt, 1970), an acceptable a is any

member of the set

where P is a number satisfying 0 _ p < 1. (The smaller the value of P, the closer the approxi-

mation of a to a zero of f.)
The computation of an acceptable steplength involves an iterative procedure for finding

a zero of fl. Many efficient algorithms have been developed for finding the zero of a general

univariate function (see, e.g., Brent, 1973), based on iterative approximation by a low-order

polynomial. However, such methods tend to perform poorly in the presence of singularities.

In order to overcome this difficulty, special steplength algorithms have been devised for the

logarithmic barrier function (e.g., Fletcher and McCann, 1969; Murray and Wright, 1976). These

special procedures are based on approximating f(a) by a function with a similar singularity.

Given an interval I such that * 6 1 and r c i, a new interval c( cI) is generated using

a,,,, the zero of a simple monotonic function 4(a) that approximates f(a). Let a. e I be the

current best estimate of at. Define the function #(a) to be

+ 72

am, - a

where the coefficients -fl and 72 are chosen such that 4(a.) = r(ag) and 4'(as) = j1(a.). The

new estimate of the zero of f'(a) is then given by

a# = QM + 72/71.

Using this prescription, a sequence of intervals {I,) is generated such that Io = [0, a.],
Ii c 4i_- and F c Ii.(For additional details, see Murray and Wright, 1976.) The first point a,
that lies in r is taken as a.

In practice, we find that a close approximation to the minimum of F(z-+ap) can be obtained

after very few estimates a, (typically 1, 2 or 3). However, the minimum is usually very close to

am. Thus, if an accurate search is performed, at least one variable will become very near to its

bound. Sometimes this may be beneficial, but in phase I particularly, the danger exists that the

optimal value of that variable could be well away from its bound. Although convergence is still

assured, the rate of convergence may temporarily be poor.

To guard against this, we set P = 0.999 and use 0.9am as an initial step, which is normally

accepted. If necessary, we compute the sequence of estimates a, as described.

4.5. Choice of the barrier parameter. In a "classical' barrier-function method (e.g., as

described in Fiacco and McCormick, 1968), the usual procedure is to choose an initial -value of p,

,. .. .. .. .,-. -. ' -;.... .. , .,. .. .._. .. .-.. .-.-.. .- _ .- .-.-. ,... ..- .-.- .-.,.- .-.. ,. ; - ... ,-... :.- ..-- .-.- " ,-7
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solve the subproblem (2.2), and then decrease p (say, by multiplying by a constant). In order for

z* (&) to converge to X*, it is essential that p --# 0. If the barrier search direction and a steplength

as defined in Section 4.4 are used to solve (2.2) with a fixed p, standard proofs for descent methods

(see, e.g., Ortega and Rheinboldt, 1970) can be applied to guarantee convergence to z(p). When

(2.1) is non-degenerate and p is "sufficiently small" (say, p = p .) it follows from (2.3a) that

the final iterate of the barrier method will approximate the solution of the linear program (2.1) to

within the accuracy specified by pitj for a non-degenerate problem. If the problem is degenerate,

(2.3b) implies that the solution will be less accurate.
Various strategies for changing p can be devised. The main aim is to reduce as quickly

" as possible, subject to ensuring steady progress toward the solution. For example, only a single

step of Newton's method could be performed for each of a decreasing sequence of p-values.

Alternatively, each value of p could be retained until the new iterate satisfies some convergence

criterion for the subproblem.

The vector r = Dr7 - pe = D(g - ATr) may be used to measure convergence for the current

subproblem, since it is a scaled form of g - AT (the reduced gradient for the subproblem), which

must tend to zero for any fixed p. The size of IlrII is monitored in our implementation, and the

reduction of p is controlled by two parameters as follows.

1. An initial "target level" for IHrJJ is defined to be r - IlroUI * RFAC.

2. Whenever JJr]J <_ r, the barrier parameter is reduced to p KUFAC, r is recomputed, and a

new target level is defined to be r = Ifril * ROFAC.

The parameters ROFAC and MUFAC should lie in the range (0, 1) to be meaningful. For example,

the values IROFAC = 0.99, MUFAC = 0.25 allow a moderate reduction in p almost every iteration,

while ROFAC = MUFAC = 0.001 requests more discernible progress towards optimality for each

subproblem, with a substantial reduction in p on rare occasions.

4.6. Convergence tests. Three other parameters are needed to define the initial and final

values of the barrier parameter, and the degree of optimality required for the final subproblem.

In an effort to allow for poor scaling in the data, we initialize p to

.o(1 + Iczol)/(nln(t + lixoll))

for some 10, and whenever a newly reduced p is smaller than

pU.s(t + Icrzl)/(nln(1 + 11:1))

for the current z, # is fixed at the latter value for the remaining iterations. At the same time,
the target level for the reduced gradient is fixed at

and termination occurs when IHrit subsequently falls below that value.
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In our experiments we have used po - 0.1,, p . -10 - , and r-. - 10 - 7. If o is too large

a danger exists on problems for which the feasible region Ax - b, : > O is unboundedu since the

barrier function is then unbounded below, the iterates can diverge in phase I before the artificial

variable f reaches zero.

5. Numerical Results

5.1. Performance of the barrier method on a standard test set. In this section we

summarize the performance of the barrier algorithm described in Section 4 on problems from an

LP test set in use at the Systems Optimization Laboratory. All problems are in the form (2.1).

To obtain constraints of the form Ax = b, any general inequality constraints are converted to

equalities using slack variables. Details of the problems are summarized in Table 1. The value
of "rows' refers to the number of general constraints, and 'columns' to the number of variables,

excluding slacks. The number 'slacks' is defined above. The column "A' gives the number of
nonzeros in the problem. This figure includes one for each slack but excludes the nonzeros in b

and e.

The runs summarized in Tables 2-6 were made in double precision on an IBM 3081K (relative
precision 2.2 x 10-1s). The source code was compiled with the IBM Fortran 77 compiler VS

Fortran, using NOSDUMP, KOM and 0PT(3).

Table 2 gives the number of iterations and CPU-seconds required by the the primal simplex
-method, as implemented in the Fortran code MINOS 5.0 (May 1985). The default values of the

parameters were used throughout (see Murtagh and Saunders, 1983). Results are also given in the
case where the constraints are scaled by an iterative procedure that makes the matrix coelcients
as close as possible to one.

Many runs were made incorporating different choices for the parameters RWFAC and NUFAC,
which specify the accuracy of a given subproblem and the rate at which the barrier parameter is

reduced. One aim was to find a set of values that could be used reliably on all problems. It was
found that RGFAC = 0.1 and MUFAC = 0.1 gave the most consistent results. Table 3 summarizes

the performance of the barrier method with these values. The second and third columns of the
table give the number of iterations to obtain a feasible point and the total iterations required

to satisfy the convergence tests of Section 4.6. The fourth column gives the total CPU time (in

seconds) to solve the problem. The values of the optimal objective function found by MINOS 5.0
were used to judge the accuracy of the final objective in the barrier rums. The underlined digits

in the fifth column show the correct figures in the objective function on termination. The final
two columns indicate the degree of feasibility and optimality of the final point.

Table 4 gives the results of applying the barrier alrorithm with the same scaling procedure
as in MNOS 5.0. Note that scaling alters the startbig point oboe, but otherwise its effect was

substantial only on Sharelb.

Table 5 illustrates the performance of a single-phase method in which a composite objective

ffunction of the form we s + J was used throughout (see Section 4.2). The number of phase I
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iterations is sometimes greater than that for w -0 (cf. Table 4), but the total number of iterations
is generally less.

Some statistics concerning the matriz t used in MINOS .0 and the barrier

method are provided in Tble 6. As in Toble 1, colmna "A! gives the umber of nozero@ in

the problem. The columns *J3 and "L + U' give the number of nemeros in the simplex basis

and its LU factors after the last refactorkiatim (th is typically the most dense fatorizatiom of

all those performed). Finally, the column '3' contains the umber o nomero in the Cholesny

factorisation (4.5) required by the barrier method.

• , Talde 1

Problem Statistics

Problem Rows slacks Columns A It 1 101

Afiro 27 19 32 102 9. lop 3.9 lt

ADLitIe 56 41 97 44 6.1 lop 6.2 lo

Shoreft 96 83 79 777 i.s lo 3.8 lop

Sharelb 117 to 225 1179 1.310 7.7,,

Beaconfd 173 33 262 3M40 1.610 1.2 lo

brael 174 174 142 244 9.1:0 l .6 top

Brandy 220 64 249 2202 6.510 $.ie.
EBRO 223 190 282 2768 9.6 lop 4.1 1o

BandM 306 0 472 12494 1 1.5:0 3.0 10I

Table 2
Results from the primal simplex code MN O$ 5.0

Optimal No scaling With scaling

Objective Phase 1 Total Time Phase 1 Total Time

Afiro -4.6476314 2 6 0.5 2 6 0.6

ADLiUl. 226494.96 28 123 1.3 30 98 1.1

Sheame -416.73224 59 91 1.3 74 121 1.4

Sharelb -76689.319 136 296 3.4 144 60 2.8

BeaM~d 3"92.486 8 8 .1.9 6 39 1.8

lurel -896644.82 109 345 5.0 41 231 3.7

Brandy 1518.6099 176 2 4.9 216 377 5.9
15to -1.751929 109 670 9.4 101 471 7.5

BandU -168.62801 167 362 7.6 280 534 10.0
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Table 3
No scaling, RGFAC = 0.1, MUFAC 0.1

Problem Phase 1 Total Time Objective Ij4!i ID(*-Arf)l

Ajiro 4 20 0.4 -464.7314 3.610-12 1.91o-

ADLittle 13 36 1.1 n25494.6 8.8 1O- 10  2.4 1o- 10

Sharetb 7 22 1.5 -4I73LM4 2.1 10-  9.3 lO-11

Sharelb 11 66 4.9 -Z6589.319 9.8 10 4.5 10-11

Beaconfd 20 40 9.9 33592.486 8.4 lO-  4.510-11

Israel 17 54 22.6 -89448A2 8.61o- 0  9.410- 12

BrandY 19 40 8.5 1I809 3.8 iO- 6 3.7 io- 11

is26 18 45 9.8 -IL71029 8.0 1O-  1.41o- 10

BandM 19 41 9.3 -158.62802 3.7 lO-  5.6 1O-11

Table 4
With scaling, RCFAC = 0.1, MUFAC =0.1

Problem Phase 1 Total Time Objective 1 I IDJ*-Arw)l1w ISHI

Afiro 4 20 0.4 -4f4i7L4 6.3 10-'2 9.6 o- 10

AD'Little 13 34 1.1 ,25494.96 6.0 1o-10 2.2 o- 0

Sharefb 8 24 1.6 -415.73224 4.9 lO-0 5.410-11

Sharelb 7 33 2.8 -76589.319 4.7 lO-0 4.7 O- 12

Beaconfd 22 42 11.1 33592.486 1.9 10-  1.5 - 10

Israei 11 58 24.1 -896644.82 1.6 1o-  5.0 10- 12

BrandY 18 42 9.2 1518.5099 1.3 lO-7 1.8 to-

5226 18 46 10.2 -18.751929 1.1 1 -7 1.4 lO-11
BandMA 20 43 9.8 -158.62802 1.7 10-8 4.3 10"- 1
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Table 5
Composite objective function

With scaling, RFAC = 0.1, WAC = 0.1, w = 0.01/.11

Problem Phae 1 Total Time Objective I6 4 IDe-r)l

A/iro 4 20 0.4 -4§4T5314 5.5 1o- 1  9.310-1

ADLttle 17 31 1.0 2214.6 6.3 1o- 9.710-11

Shareeb 8 24 1.6 -410.73=4 4.410- 10  6.410-11

Sharelb 7 33 2.8 -6589.319 4.41o- 9 4.6 1o- 1

Beacohtd 24 32 9.6 =692.486 2.2 10-  2.510-11

Israel 11 62 25.1 -896644.82 6.21o-  4.810- 11

BrandY 25 35 8.1 1518.5099 6.7 1o- T  9.8 O- 18

BOB6 21 40 9.4 -18.751929 6.5 10-  1.5 1 - 11

BandM 23 35 8.9 -18.6282 1.4 1o-  3.21o- 11

Table 6

Factorization Statistics

Problem A B L+U R

A/iro 102 67 67 s0

ADLiUI 424 261 275 355

Sak.eb 777 564 597 925

Sharelb 1179 579 636 134

Beeconfd 3408 1546 1646 2727

Imel 2443 1644 1664 M5Ut

Brandy 2202 1318 1485 3251

Rose 2768 1440 1620 3416

BandM 2494 2016 2372 4355

t11259 if six dense columns are included.

5.2. Obtaining an optimal basic solution. By its very nature, a barrier method can at best

terminate somewhere 'close' to an optimum. We must then ask: how close is "close', and which

of the several characterizations of LP optimality are we close to achieving?

In practice, LP users (and their report-writing program.) expect alleged optimal solutions to

be both primal and dual feasible, thus exhibiting complementary slackness. The last column in

Tables 3-5 show that the barrier algorithm can attain complementary slackness to high precision.

However, LP users also expect their solutions to be basic. This can be achieved by taking the

final solution from the barrier algorithm and processing it throuh the BASICprocedure common

.4e.

x- .
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to most mathematical programming systems.

The BASIC procedure (sometimes known as INSsRr by uu5m, see Benichou et a., 1977)

takes a set of variable names and values and produces a basic solution that has at least as good

an objective value or sum of infeasibilities. The simplex method may then be applied to reach

optimality. The time required by BASIC and the simplex method together, compared to the

time required by the simplex method alone, provides another practical measure of closeness to

optimality.

Some experiments of this kind were performed to test the quality of the solutions obtained by

the barrier algorithm. An early implementation of the barrier algorithm was used, with a slightly

different starting point for phase I and a different strategy for controlling p. This strategy

initialized i to 10IcJI/n and multiplied p by 0.25 every iteration if p was still larger than 10-s.

The algorithm was terminated when max i Jzjt1qj < 10-7HcIIzII, i.e., when complementarity was

approximately achieved.

These experiments were carried out on an IBM 3033N, except for one problem DegcmS that

was run on an IBM 3081K. The problems used were an available subset of those in Table 1, plus

a graduated set of three models from a single application, ranging from small to medium in size

(see Table 7) and notable for their severe degeneracy.

Initially, all problems were solved from scratch by Ketron's WHIZARD optimizer, which was
called from MPSIII in all cases except for Degera, where the host was MPSX/370. The first

three columns of Table 8 give the number of columns selected for the initial basis by CRASH,
the number of simplex iterations required to reach optimality, and the CPU time in seconds.

(All times in this section are for a complete MVS job step, including model input and solution

output.)

The next three columns of Table 8 give results for the barrier algorithm. For the smaller

problems, there is about 10 percent overhead for input, output, symbolic ordering (subroutine
Genqmd) and symbolic factorization (subroutine Smbct). For the larger problems, the cost of

the single call to Genqmd became significant: 2.4 seconds for BandI, 13.4 seconds for Degent,

and 237 seconds for Degen$. Clearly some more efficient means of preprocessing must be found

. for large problems.

Table 7 compares the number of nonseros in a typical WHIZARD basis factorization with

the number of nonzeros in the Cholesky factors R, again indicating the high cost of solving large

least-squares problems.

The last two columns of Table 8 show the work required by BASIC and the simplex method

to reach optimality, starting from the point obtained by the barrier algorithm. With i denoting
the basic solution obtained by BASIC, the quantities Ob - AiI/Sbf were observed to be less than

I0-5 in all cases, and the values of JeT - c'V I/IJclx'I were all less than 10-'. The number of
subsequent simplex iterations appears to be a function of size and degeneracy, the two being

closely related in this sample. Clearly, the primary effect of the post-BASIC iterations is to

remove dual infesibilities.

[ .CZ
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The problems BrandY, BRZ Oand BmDM have 23,20 and I1 structurally degenerate variables

respectively. Ideally, these should be removed by the PRESOLVE procedure before entering the

barrier (or simplex) method. They can be restored and dual feasibility attained at trivial cost by

-. the POSTSOL V procedure (see Tomlin and Welch, 1983). At present there is no obvious way

-, of circumventing extreme degeneracy of the ordinary type, such as that displayed by the Degen
problems. However, the relative number of post-BASIC simplex iterations required for these

problems appears to decline with problem size, compared to the number required when starting

from scratch. It may well be that non-simplex methods such as the projective and barrier methods

will prove most valuable for dealing with very degenerate LPs.

Table I
Model statistics - degenerate problem set

Problem Rows Slacks Columns A B L + U R

Degeni 66 16 72 296 249 251 514

DegenE 444 223 534 4894 3076 3718 16243

DegenS 1503 786 1818 25432 18468 20322 119373

Table 8

Results from the BASIC procedure

Whisard Barrier BASIC

Crash Simplex Time Phase 1 Total Time Simplex Time

Afiro 18 4 0.5 3 14 0.3 0 0.2

. ADLitL. 18 80 1.0 8 23 1.2 1 0.3

Sharefb 13 84 1.1 6 17 1.8 2 0.4

BrandY 85 168 2.7 12 29 10.8 6 2.3

nBD6 50 350 3.9 15 29 13.0 6 2.2

BandI 114 253 3.5 15 28 13.0 5 2.8

Degenl 38 23 0.7 2 15 0.9 18 0.7

Degent 187 2650 31.2 13 26 54.9 300 7.3

Degens 590 8889 226.0 11 25 528.0 593 60.0

.1

6. Future Developnients and Conclusions

6.1. Solving the least-squae subprobh. The present implementation, as in Gay (1981),

uses a preconditioned conjugate-gradient method to solve the relevant least-squares subproblems.

This approach allows the use of existing software for computing Cholesky factors, and provides a

C' ""-"-".", .. . . " ;, . .7 ." " " ". . , - , ..-- "'".-. . - . . . . . ' . •" -% - •. . .- .-.
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convenient way of dealing with a few dense columns of A that would degrade the sparsity of those
factors. Perhaps further efficiency could be gained by discarding mall nonzeros in the product
AD 2Ar (not just rows and columns of A) before computing its Cholesky factors. However, a new
symbolic factorization would then be required at every stage, not just once.

Unfortunately, it seems that the quality of the preconditioner must remain rather high
throughout, since an iteration of LSQR or the conjugte-gradient method requires two matrix-
vector products involving A and two solves with the preconditiomer R, and is therefore as ex-
pensive (typically) as two iterations of the simplex method. If the average number of iterations
required by LSQR were 20, say, then the barrier algorithm would have to terminate in about
l/50th the number of iterations in order to be competitive with the simplex method, even if

minimal effort were required to obtain R each iteration.

To illustrate, the test problem Ilrd has six dense columns in A. With these excluded
from the computation of R, LSQt required an average of 12 iterations, and the run time was
correspondingly high. (On the other hand, retauning all columns gave an R with three times as
many nonseros and a run-time twice as great.)

For reasons such as these, we remain doubtful that good preconditioners can be computed
with adequate efficiency for arbitrary matrices DA', i.e., for arbitrary linear programs. Only for
special classes of problem does there seem to be room for optimism; for example, those exhibiting
a block-triangular structure with many smaU diagonal blocks.

In place of the iterative methods just described, one can employ a sparse orthogonal factor-

-" ization of the form
-iD'

DArTQ ), Q0Q =1, R upper triangular (6.1)

to solve the least-squares problems directly, where R is analytically the same as the Cholesky
factor of ADAT General-purpose software exists for this computation, in particular SPARSPAK-

"- B (George and Ng, 1984), which has excellent numerical properties and is able to treat dense
rows of DAT specially in order to preserve the sparsity of R. Its use in this context merits future
investigation.

A further direct approach is to apply a sparse indefinite solver to the symmetric system (2.10).
The MA27 package of Duff and Reid (1982) is applicable, and we believe it shows considerable
promise. As with the sparse QR (6.1), a single symbolic factorizsation would serve all iterations.
In addition, dense columns in A would not drastically affect the sparsity of the factors.

6.2. Adjustlng the barrier parameter. Numerous authors have suggested extrapolation
techniques in connection with barrier functions. We have conducted some limited experiments,
as follows. The barrier function was minimized reasonably accurately for two quite large values
of p (Hell/n and 0.111 c/n), and extrapolation was then performed. The resulting solution was
accurate to about five figures. However, it is difficult to evaluate the practical merits of this
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approach without further study. Recall that such a strategy would need to be applied to both

phases.
A number of suggestions have been made for automating the choice of p. The method of

centers (see Fiacco and McCormick, 1968; Huard, 1967) is in essence a barrier-function method
in which a transformation is also applied to the objective function, thereby negating the need for

a barrier parameter. See also Todd and Burrell (1985) for a discussion of this approach.
It should be stressed, however, that the freedom to choose p may well be an asset, especially

in the case of linear programs. This is confirmed by our experience with the conservative strategy
of allowing i to be reduced only occasionally. Considerable progress is then often achieved before

the least-squares problems become unduly ill-conditioned.

6.8. Use of the entropy function. Because of the similarities, we note the work of many
authors on incorporating the entropy function into linear programming models. In place of

subproblem (2.2), one can consider the subproblem

minmuse c ap]Lzjlnzj

subject to Az = I,

where the scalar i (p > 0) is again specified for each subproblem. Eriander (1977) reviews

problems of this kind and suggests Newton-type methitds for their solution. Computational
algorithms have been developed by Eriksson (1980, 1981).

If a feasible-point descent method is applied as in Section 2, the Newton search direction and

*. Lagrange-multiplier estimates satisfy the system

( o1  AT (-P)1 (C+'"
A 0 kr 0o

in place of (2.9), where D - diag(zj) and v has components vi - I + n s. A least-squares
subproblem follows as before. In terms of the algorithm of Section 4.1, r would be defined an
r = D/2(q + p) in steps 1, 3 and 5, and D would be hanged to D in the least-squares

problem (4.1). Finally, we would have p - -(1/p)D/ 2 r in step 5.

The entropy function is convex and (unlike the logarithmic barrier function) it is bounded

below. Also, since its Hessian is #D- 1 rather than pD- , the leat-squares problems should be

better conditioned as the LP solution is approached. Further computational work therefore seems

to be justified, either as in Irikson (1980, 1981) or along the lines suggested here.

6.4. Conclusions. Most qualitative aspects of Karmarkar's projective method can be found in

the projected Newton barrier algorithm described here. The nonlinear programming viewpoint

has provided us with an armory of known theoretical and practical techniques, to be applied

• "to convergence analysis and computer implementation. To date, a casualty appears to be the

proof of polynomial complexity. While this may seem a serious loss, the number of iterations

%. ~ ~ ZZZ N
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required by the barrier algorithm appears to be similar in practice to that reported for various

projective methods (d. lbmlin, 1965, and Lustig, 1965), and our implementation has proved to

be competitive with the simplex method on some of a limited class of moderate-sized problems

(all of which are degenerate and poorly scaled).
Two facts remain:

* large-scale least-squares problems can be very expensive to solve (compared to square systems

Bx= I);
e interior-point methods are inescapably minimizing a highly nonlinear function.

In view of the second point, poor performance can be expected if variables migrate prematurely

towards the singularities at their bounds. It has been difficult to develop a robust algorithm for

. this reason. The same difficulty arises if a "good! starting point is available from an earlier run

on a similar problem (by far the most common situation), since such a solution will have many

variables on or close to their bounds.

From the computational evidence to date, the future for interior-point methods seems bright-

est in the context of cold-start solution of very large, specially structured problems.
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